DeveloperBreeze

Edge computing has become a key technology in the Internet of Things (IoT) ecosystem. By processing data closer to the source of generation, it reduces latency, increases performance, and enhances security. This tutorial will guide you through mastering edge computing with Python and IoT integration, showcasing how you can collect, process, and act on data using edge devices.

What is Edge Computing?

Edge computing refers to the practice of processing data at or near the data source (like IoT devices) instead of sending it to a centralized cloud server. This approach offers several benefits:

  • Reduced Latency: Data processing happens in real-time near the source, enabling faster responses.
  • Bandwidth Efficiency: Since not all data needs to be sent to the cloud, network bandwidth usage is reduced.
  • Improved Security: Localized data processing can enhance privacy and security, as sensitive data does not have to leave the device.

Edge computing is particularly useful in IoT, where sensors and devices generate massive amounts of data in real-time.

Prerequisites

  • Basic Python programming knowledge
  • Familiarity with IoT concepts such as sensors, devices, and networks
  • A Raspberry Pi or any edge-capable device (like Nvidia Jetson Nano)
  • Sensors (e.g., temperature, humidity, or motion sensors)
  • Python 3.x installed on the device

Step 1: Setting Up Your IoT Device for Edge Computing

For this tutorial, we'll use a Raspberry Pi as our edge device.

  1. Install Python on Raspberry Pi:

Ensure Python is installed on your Raspberry Pi (it usually comes pre-installed on Raspbian OS):

   sudo apt-get update
   sudo apt-get install python3
  1. Connect the Sensors:

Depending on the type of sensor you're using, connect it to your Raspberry Pi's GPIO pins. For example, a temperature and humidity sensor (DHT11 or DHT22) can be connected to a digital GPIO pin.

  1. Install Required Python Libraries:

We’ll use the Adafruit_DHT library for reading sensor data from a DHT sensor. Install the library using:

   pip install Adafruit_DHT

Step 2: Reading Data from Sensors

Let’s start by reading data from the sensor connected to the Raspberry Pi. The following Python script collects temperature and humidity data from a DHT22 sensor.

import Adafruit_DHT

# Set sensor type and GPIO pin
sensor = Adafruit_DHT.DHT22
pin = 4  # GPIO pin number where the sensor is connected

# Read sensor data
humidity, temperature = Adafruit_DHT.read_retry(sensor, pin)

if humidity is not None and temperature is not None:
    print(f'Temperature: {temperature:.1f}C, Humidity: {humidity:.1f}%')
else:
    print('Failed to retrieve data from sensor')

Step 3: Processing Data at the Edge

In edge computing, processing happens locally. Let’s process the sensor data and trigger actions based on predefined conditions.

  1. Basic Processing:

Add conditions to process the data locally. For instance, you can trigger an alert if the temperature exceeds a certain threshold.

threshold_temp = 30.0  # Example threshold

if temperature > threshold_temp:
    print(f'Warning: High temperature detected ({temperature:.1f}C)')
else:
    print(f'Temperature is normal ({temperature:.1f}C)')
  1. Logging Data Locally:

You can store the data locally on the edge device, creating a simple log file for future analysis.

with open('sensor_log.csv', 'a') as f:
    f.write(f'{temperature:.1f},{humidity:.1f}\n')

Step 4: Sending Data to the Cloud (Optional)

Although edge computing focuses on local processing, some data might still be sent to the cloud for further analysis. You can send select data to cloud services like AWS IoT or Azure IoT Hub.

  1. Set Up Cloud Integration:

Install MQTT, which is a lightweight protocol commonly used in IoT for connecting devices to the cloud.

pip install paho-mqtt
  1. Publish Data to MQTT Broker:

You can use an MQTT broker (such as Mosquitto) to publish data to the cloud.

import paho.mqtt.client as mqtt

broker_address = "broker.hivemq.com"  # Public MQTT broker for testing

# Create MQTT client
client = mqtt.Client()

# Connect to broker
client.connect(broker_address)

# Publish data
client.publish("iot/temperature", temperature)
client.publish("iot/humidity", humidity)

Step 5: Deploying Edge AI Models (Advanced)

To take edge computing to the next level, you can deploy AI models locally. For instance, using a pre-trained TensorFlow Lite model, you can classify data directly on the edge device.

  1. Install TensorFlow Lite:

TensorFlow Lite is optimized for running machine learning models on small devices like Raspberry Pi. Install it using:

   pip install tflite-runtime
  1. Run an AI Model on the Edge:

Load a pre-trained model to make predictions on the collected data. For example, classify temperature data into categories such as "Normal," "Moderate," or "High" using a simple model.

import tensorflow as tf
import numpy as np

# Load the TensorFlow Lite model
interpreter = tf.lite.Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()

# Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Prepare the input data
input_data = np.array([[temperature]], dtype=np.float32)

# Make predictions
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()

# Get classification results
output_data = interpreter.get_tensor(output_details[0]['index'])
print(f'Predicted Class: {output_data}')

Step 6: Conclusion and Best Practices

Edge computing offers significant advantages for IoT systems, especially when combined with Python for data processing and AI model integration. By following this tutorial, you’ve learned how to:

  • Set up a Python-based edge computing system on a Raspberry Pi
  • Collect and process sensor data locally
  • Optionally send data to the cloud for further processing
  • Deploy AI models at the edge for real-time decision-making

Best Practices for Edge Computing with IoT:

  • Optimize Processing: Only process necessary data at the edge, and offload more complex tasks to the cloud.
  • Data Security: Implement local encryption and secure data transmission protocols.
  • Monitor Resource Usage: Edge devices have limited resources; ensure your application is optimized for memory and CPU usage.

Edge computing will play a crucial role in the IoT ecosystem's future, and mastering it with Python can unlock new possibilities for developing responsive, intelligent applications.


Additional Resources:

Continue Reading

Discover more amazing content handpicked just for you

Tutorial

Globalization in React (2025 Trends & Best Practices)

  • 🇪🇺 GDPR requires local-language privacy policies
  • 🇨🇳 China's Cybersecurity Law needs local hosting + Mandarin support
  • 🇸🇦 Saudi localization laws mandate Arabic for all government services

Your React app must support legal localization where applicable.

May 04, 2025
Read More
Tutorial

Implementing Internationalization (i18n) in a Large React Application (2025 Guide)

Create folder structure:

/src
  /locales
    en.json
    fr.json

May 04, 2025
Read More
Tutorial

Building Micro-Frontends with Webpack Module Federation (2025 Guide)

  • Faster deployment cycles
  • Independent scaling of frontend parts
  • Team autonomy across tech stacks (e.g., React, Vue, Angular)

At the core of this revolution is Webpack 5’s Module Federation Plugin, which allows independently deployed builds to share code dynamically.

May 04, 2025
Read More
Tutorial

State Management Beyond Redux: Using Zustand for Scalable React Apps

While both Zustand and Redux serve the purpose of state management in React applications, they differ significantly in their approach and complexity.

Zustand's simplicity and performance make it a compelling choice for projects where Redux might be overkill.

May 03, 2025
Read More
Tutorial

Mastering React Rendering Performance with Memoization and Context

   const increment = useCallback(() => setCount(c => c + 1), []);

Implementing these practices ensures that only components dependent on specific context values re-render when those values change.([Medium][7])

May 03, 2025
Read More
Cheatsheet

ShadCN Cheatsheet

npx shadcn-ui@latest add theme
npx shadcn-ui@latest add [component] --overwrite

Apr 12, 2025
Read More
Article

هل سينهي الذكاء الاصطناعي مهنة المبرمج؟ اكتشف الحقيقة!

تطوير البرمجيات يتطلب العمل ضمن فرق، والتواصل المستمر مع مصممين، محللين، ومديرين، وهذه مهارة بشرية بامتياز.

الذكاء الاصطناعي لم يُلغِ دور المبرمج، بل غيّر طريقة عمله. أصبح المبرمج:

Apr 04, 2025
Read More
Article

6 مهارات غير برمجية لازم تتعلمها كمبرمج مستقل علشان تكسب وتنجح في 2025

عشان كده في 2025، لو عايز تشتغل حر وتكسب، لازم تطور مهارات خارج الكود.

يلا نبدأ 👇

Mar 29, 2025
Read More
Article

5 أسباب تخلي كل مبرمج عربي يبدأ قناة على يوتيوب في 2025

  • فرص مشاريع
  • شراكات
  • مبيعات أسرع لمنتجاتك الرقمية

العميل أو المتابع اللي بيشوفك بتشرح حاجة، بيثق إنك فاهم فعلًا وعاوز تساعد.

Mar 29, 2025
Read More
Article

أفكار مشاريع برمجية مربحة للمبرمجين العرب في 2025 (ابدأ بها من اليوم!)

أنشئ موقعًا بسيطًا:

  • قاعدة بيانات للأدوات
  • تصنيفات (نصوص - صور - صوت...)
  • تقييمات ومراجعات من المستخدمين

Mar 29, 2025
Read More
Tutorial
javascript

Building a Real-Time Object Detection Web App with TensorFlow.js and p5.js

  • A modern web browser that supports webcam access (Chrome, Firefox, or Edge).
  • Basic knowledge of HTML, CSS, and JavaScript.
  • Familiarity with p5.js (optional, but helpful).
  • A code editor (Visual Studio Code, Sublime Text, etc.).

You do not need any backend setup since everything runs in the browser using TensorFlow.js and p5.js.

Feb 12, 2025
Read More
Tutorial

Building a Cross-Platform Desktop App with Tauri and Svelte: A Step-by-Step Tutorial

Inside your Svelte project, initialize Tauri by running:

npx tauri init

Feb 12, 2025
Read More
Tutorial
python

دليل عملي: بناء روبوت دردشة (Chatbot) باستخدام Python و NLP

هذا النموذج البسيط يمثل بداية رحلتك في تطوير روبوتات الدردشة. يمكنك تخصيصه، تحسينه، أو حتى تحويله إلى مشروع متكامل يخدم المستخدمين في مختلف المجالات.

جرب إنشاء روبوت دردشة خاص بك وشاركنا تجربتك. هل لديك أفكار لروبوت أكثر ذكاءً؟ شاركنا إياها في التعليقات! 🚀

Dec 12, 2024
Read More
Tutorial
python

كيف تبدأ رحلتك مع الذكاء الاصطناعي: دليل عملي للمبتدئين

حان وقت استخدام النموذج:

new_data = [[2000, 3, 15]]  # الحجم، عدد الغرف، عمر العقار
prediction = model.predict(new_data)
print(f"السعر المتوقع: ${prediction[0]:.2f}")

Dec 12, 2024
Read More
Tutorial
python

دليل شامل: الذكاء الاصطناعي (AI) في تطوير البرمجيات

pip install numpy pandas scikit-learn matplotlib

قم بتحميل بيانات أسعار المنازل أو أي بيانات أخرى للتجربة. على سبيل المثال:

Dec 12, 2024
Read More
Tutorial
python

Building a Scalable Event-Driven System with Kafka

   bin/kafka-server-start.sh config/server.properties

Kafka organizes messages into topics. Create a topic for your system:

Dec 10, 2024
Read More
Tutorial
javascript css +1

How to Create a Chrome Extension for Automating Tweets on X (Twitter)

  • manifest.json: Defines the extension's metadata and permissions.
  • background.js: Runs in the background to handle tweet automation logic.
  • content.js: Interacts with the X website.
  • popup.html: The user interface for starting/stopping the automation.
  • popup.js: Handles user interactions from the popup.

The manifest.json is the heart of the extension. It defines the extension's properties and permissions. Paste the following code into your manifest.json file:

Dec 10, 2024
Read More
Tutorial
python

Mastering Metaclasses and Dynamic Class Creation in 2024

Metaclasses can register plugins dynamically.

class PluginMeta(type):
    plugins = []

    def __new__(cls, name, bases, dct):
        new_class = super().__new__(cls, name, bases, dct)
        cls.plugins.append(new_class)
        return new_class

class PluginBase(metaclass=PluginMeta):
    pass

class MyPlugin(PluginBase):
    pass

print(PluginMeta.plugins)  # Output: [<class '__main__.MyPlugin'>]

Dec 10, 2024
Read More
Tutorial
python

Mastering Generators and Coroutines in 2024

Debugging asynchronous code and generators can be tricky. Use these tools for better insights:

  • asyncio.run: Use for structured coroutine execution.
  • pytest-asyncio: A pytest plugin for testing coroutines.
  • trio: An alternative asynchronous framework with powerful debugging features.

Dec 10, 2024
Read More
Tutorial
python

Build a Multiplayer Game with Python and WebSockets

   python websocket_server.py
   python app.py

Dec 10, 2024
Read More

Discussion 0

Please sign in to join the discussion.

No comments yet. Start the discussion!