Numpy Programming Tutorials, Guides & Best Practices
Explore 6+ expertly crafted numpy tutorials, components, and code examples. Stay productive and build faster with proven implementation strategies and design patterns from DeveloperBreeze.
Adblocker Detected
It looks like you're using an adblocker. Our website relies on ads to keep running. Please consider disabling your adblocker to support us and access the content.
دليل شامل: الذكاء الاصطناعي (AI) في تطوير البرمجيات
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# تقسيم البيانات
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# إنشاء النموذج
model = LinearRegression()
model.fit(X_train, y_train)
# اختبار النموذج
accuracy = model.score(X_test, y_test)
print(f"دقة النموذج: {accuracy:.2f}")قم باستخدام النموذج لتوقع أسعار جديدة:
Reshape NumPy Array
The following Python code demonstrates how to reshape a one-dimensional array into a two-dimensional array using NumPy:
import numpy as np
# Define a one-dimensional array
arr = np.array([1, 2, 3, 4, 5, 6])
# Reshape the array into a 2x3 matrix
reshaped_arr = arr.reshape(2, 3)
print(reshaped_arr)Performing Addition and Multiplication on NumPy Arrays
No preview available for this content.
Calculate Mean and Standard Deviation of NumPy Array
The following Python code demonstrates how to calculate the mean and standard deviation of an array using NumPy:
import numpy as np
# Create an array
arr = np.array([10, 20, 30, 40, 50])
# Calculate and print the mean
mean = np.mean(arr)
print('Mean:', mean)
# Calculate and print the standard deviation
std_dev = np.std(arr)
print('Standard Deviation:', std_dev)