Javascript Machine Learning Development Tutorials, Guides & Insights
Unlock 1+ expert-curated javascript machine learning tutorials, real-world code snippets, and modern dev strategies. From fundamentals to advanced topics, boost your javascript machine learning skills on DeveloperBreeze.
Adblocker Detected
It looks like you're using an adblocker. Our website relies on ads to keep running. Please consider disabling your adblocker to support us and access the content.
Tutorial
javascript
Leveraging Machine Learning Models in Real-Time with TensorFlow.js and React: Building AI-Powered Interfaces
Next, we’ll load a pre-trained model (e.g., MobileNet) when the component mounts. We can use the useEffect hook for this purpose:
import React, { useState, useEffect } from 'react';
import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-backend-cpu';
import '@tensorflow/tfjs-backend-webgl';
function ImageClassifier() {
const [image, setImage] = useState(null);
const [model, setModel] = useState(null);
useEffect(() => {
const loadModel = async () => {
const loadedModel = await tf.loadGraphModel('https://path-to-model/model.json');
setModel(loadedModel);
};
loadModel();
}, []);
const handleImageUpload = (event) => {
const file = event.target.files[0];
const reader = new FileReader();
reader.onload = () => {
setImage(reader.result);
};
if (file) {
reader.readAsDataURL(file);
}
};
return (
<div>
<input type="file" accept="image/*" onChange={handleImageUpload} />
{image && <img src={image} alt="Uploaded" />}
</div>
);
}
export default ImageClassifier;Aug 20, 2024
Read More