Javascript Machine Learning Development Tutorials, Guides & Insights
Unlock 1+ expert-curated javascript machine learning tutorials, real-world code snippets, and modern dev strategies. From fundamentals to advanced topics, boost your javascript machine learning skills on DeveloperBreeze.
Adblocker Detected
It looks like you're using an adblocker. Our website relies on ads to keep running. Please consider disabling your adblocker to support us and access the content.
Leveraging Machine Learning Models in Real-Time with TensorFlow.js and React: Building AI-Powered Interfaces
Now that we have the model loaded and an image selected, we can run predictions on the uploaded image. TensorFlow.js allows us to process the image and get predictions using the loaded model.
import React, { useState, useEffect } from 'react';
import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-backend-cpu';
import '@tensorflow/tfjs-backend-webgl';
function ImageClassifier() {
const [image, setImage] = useState(null);
const [model, setModel] = useState(null);
const [predictions, setPredictions] = useState(null);
useEffect(() => {
const loadModel = async () => {
const loadedModel = await tf.loadGraphModel('https://path-to-model/model.json');
setModel(loadedModel);
};
loadModel();
}, []);
const handleImageUpload = (event) => {
const file = event.target.files[0];
const reader = new FileReader();
reader.onload = async () => {
const img = new Image();
img.src = reader.result;
img.onload = async () => {
const tensor = tf.browser.fromPixels(img)
.resizeNearestNeighbor([224, 224])
.toFloat()
.expandDims();
const predictions = await model.predict(tensor).data();
setPredictions(predictions);
};
};
if (file) {
reader.readAsDataURL(file);
}
};
return (
<div>
<input type="file" accept="image/*" onChange={handleImageUpload} />
{image && <img src={image} alt="Uploaded" />}
{predictions && (
<ul>
{predictions.map((pred, index) => (
<li key={index}>{pred}</li>
))}
</ul>
)}
</div>
);
}
export default ImageClassifier;