DeveloperBreeze

Deep Copy in C++: How to Avoid Shallow Copy Pitfalls

Overview

In C++, copying objects can lead to serious bugs if you're dealing with raw pointers. By default, C++ uses shallow copy, which means only the pointer's value is copied—not the data it points to.

This tutorial covers:

  • What shallow vs deep copy means
  • The problems caused by shallow copy
  • How to implement deep copy correctly
  • A practical class example with dynamic memory
  • When to use Rule of Three vs Rule of Five

What Is Shallow Copy?

A shallow copy copies the values of member variables as-is. If your class has a pointer member, both the original and copy point to the same memory.

class Shallow {
public:
    int* data;

    Shallow(int val) {
        data = new int(val);
    }

    ~Shallow() {
        delete data;
    }
};

Now consider:

Shallow a(10);
Shallow b = a;  // default copy constructor

This causes both a.data and b.data to point to the same memory. When both destructors run, delete is called twice on the same pointer — undefined behavior!


What Is Deep Copy?

A deep copy duplicates the actual data pointed to, not just the pointer.

class Deep {
public:
    int* data;

    Deep(int val) {
        data = new int(val);
    }

    // Copy constructor for deep copy
    Deep(const Deep& other) {
        data = new int(*other.data);
    }

    // Assignment operator for deep copy
    Deep& operator=(const Deep& other) {
        if (this != &other) {
            delete data;
            data = new int(*other.data);
        }
        return *this;
    }

    ~Deep() {
        delete data;
    }
};

Rule of Three

If your class handles dynamic memory:

  • Copy Constructor
  • Copy Assignment Operator
  • Destructor

You must implement all three. This is called the Rule of Three.


Example: Deep Copy for a String Wrapper

class String {
private:
    char* buffer;

public:
    String(const char* str) {
        buffer = new char[strlen(str) + 1];
        strcpy(buffer, str);
    }

    // Copy constructor
    String(const String& other) {
        buffer = new char[strlen(other.buffer) + 1];
        strcpy(buffer, other.buffer);
    }

    // Assignment operator
    String& operator=(const String& other) {
        if (this != &other) {
            delete[] buffer;
            buffer = new char[strlen(other.buffer) + 1];
            strcpy(buffer, other.buffer);
        }
        return *this;
    }

    ~String() {
        delete[] buffer;
    }

    void print() const {
        std::cout << buffer << std::endl;
    }
};

Usage

String a("Hello");
String b = a;       // deep copy
String c("World");
c = a;              // deep assignment

All objects manage their own memory independently.


Modern C++: Rule of Five

In C++11 and newer, also consider:

  • Move Constructor
  • Move Assignment Operator

This is the Rule of Five. Add move semantics if your class is performance-sensitive and uses resource ownership.


Conclusion

When your class uses raw pointers:

  • Avoid shallow copies.
  • Always implement deep copy logic.
  • Follow the Rule of Three (or Rule of Five).
  • Prefer std::string, std::vector, or smart pointers in modern C++.

Understanding deep copy is essential for writing robust, bug-free C++ code.

Related Posts

More content you might like

Tutorial

Avoiding Memory Leaks in C++ Without Smart Pointers

Overview

C++ developers often face memory management headaches, especially when working on legacy systems that don’t use C++11 or newer. Smart pointers like std::unique_ptr and std::shared_ptr are powerful, but what if you’re stuck with raw pointers?

Apr 11, 2025
Read More
Tutorial

Implementing a Domain-Specific Language (DSL) with LLVM and C++

#include "DSL/Lexer.h"
#include "DSL/Parser.h"
#include "DSL/AST.h"
#include <llvm/IR/LLVMContext.h>
#include <llvm/IR/Module.h>
#include <llvm/Support/TargetSelect.h>
#include <iostream>
#include <memory>

extern llvm::Function* generateFunction(llvm::LLVMContext& context, llvm::Module& module, ASTNode* root);
extern void optimizeModule(llvm::Module& module);

int main() {
    // Initialize LLVM.
    llvm::InitializeNativeTarget();
    llvm::InitializeNativeTargetAsmPrinter();
    llvm::LLVMContext context;
    llvm::Module module("MyDSLModule", context);

    std::string input;
    std::cout << "Enter an expression: ";
    std::getline(std::cin, input);

    Lexer lexer(input);
    Parser parser(lexer);
    std::unique_ptr<ASTNode> astRoot;
    try {
        astRoot = parser.parseExpression();
    } catch (const std::exception& ex) {
        std::cerr << "Parsing error: " << ex.what() << std::endl;
        return 1;
    }

    llvm::Function* func = generateFunction(context, module, astRoot.get());
    if (!func) {
        std::cerr << "Failed to generate LLVM function." << std::endl;
        return 1;
    }

    optimizeModule(module);

    // For demonstration, print the LLVM IR.
    module.print(llvm::outs(), nullptr);

    // In a full implementation, you could now JIT compile and execute the function.
    return 0;
}

This basic runtime lets you enter a mathematical expression, compiles it into LLVM IR, optimizes the code, and prints the IR. Expanding this further, you can use LLVM’s JIT compilation APIs to execute the code on the fly, integrate debugging information, or even embed the DSL into larger systems.

Feb 12, 2025
Read More
Article
javascript

20 Useful Node.js tips to improve your Node.js development skills:

No preview available for this content.

Oct 24, 2024
Read More
Tutorial
javascript

Advanced JavaScript Tutorial for Experienced Developers

  • Immutable State Management with Libraries:

Libraries like Immutable.js or Immer provide utilities to enforce immutability in your state management.

Sep 02, 2024
Read More

Discussion 0

Please sign in to join the discussion.

No comments yet. Be the first to share your thoughts!