Ai-Powered Interface Development Tutorials, Guides & Insights
Unlock 1+ expert-curated ai-powered interface tutorials, real-world code snippets, and modern dev strategies. From fundamentals to advanced topics, boost your ai-powered interface skills on DeveloperBreeze.
Adblocker Detected
It looks like you're using an adblocker. Our website relies on ads to keep running. Please consider disabling your adblocker to support us and access the content.
Tutorial
javascript
Leveraging Machine Learning Models in Real-Time with TensorFlow.js and React: Building AI-Powered Interfaces
import React, { useState, useEffect } from 'react';
import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-backend-cpu';
import '@tensorflow/tfjs-backend-webgl';
function ImageClassifier() {
const [image, setImage] = useState(null);
const [model, setModel] = useState(null);
const [predictions, setPredictions] = useState(null);
useEffect(() => {
const loadModel = async () => {
const loadedModel = await tf.loadGraphModel('https://path-to-model/model.json');
setModel(loadedModel);
};
loadModel();
}, []);
const handleImageUpload = (event) => {
const file = event.target.files[0];
const reader = new FileReader();
reader.onload = async () => {
const img = new Image();
img.src = reader.result;
img.onload = async () => {
const tensor = tf.browser.fromPixels(img)
.resizeNearestNeighbor([224, 224])
.toFloat()
.expandDims();
const predictions = await model.predict(tensor).data();
setPredictions(predictions);
};
};
if (file) {
reader.readAsDataURL(file);
}
};
return (
<div>
<input type="file" accept="image/*" onChange={handleImageUpload} />
{image && <img src={image} alt="Uploaded" />}
{predictions && (
<ul>
{predictions.map((pred, index) => (
<li key={index}>{pred}</li>
))}
</ul>
)}
</div>
);
}
export default ImageClassifier;You can enhance the user experience by displaying the predictions in a user-friendly format, such as showing the top 3 predictions with confidence scores.
Aug 20, 2024
Read More